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We study a model of a multispecies ecosystem described by Lotka-Volterra-like equations. Interactions
among species form a network whose evolution is determined by the dynamics of the model. Numerical
simulations show power-law distribution of intervals between extinctions, but only for ecosystems with suffi-
cient variability of species and with networks of connectivity above certain threshold that is very close to the
percolation threshold of the network. The effect of slow environmental changes on extinction dynamics, degree
distribution of the network of interspecies interactions, and some emergent properties of our model are also
examined.
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I. INTRODUCTION

Lotka-Volterra models of interacting species have a well
established role in population ecology[1]. Being inspired by
an oscillatory behavior in some prey-predator systems, they
are typically used to model populations on a time scale
shorter than the lifetime of the describing species. It means
that long-term properties of ecosystems(macroevolution) are
usually not captured within such an approach. On the other
hand, models used to describe macroevolution very often use
the dynamics that operates at the level of species rather than
individuals. Such coarse-grained models usually refer to the
notion of fitness of a species that is not commonly
accepted[2].

Recently, there has been some attempts to study macro-
evolution using models equipped with dynamics that oper-
ates at the level of individuals[3–5]. Taking into account that
Lotka-Volterra models are relatively successful in describing
many aspects of population dynamics it would be desirable
to apply such an approach also to macroevolution. Some
time ago Abramson introduced a discrete version of Lotka-
Volterrra ecosystem[6] and studied certain characteristics of
extinctions. His model is an example of a one-dimensional
food chain withMs,100d trophic levels and a single species
occupying a given trophic level. Since in realistic food webs
M ,4−6 with typically many species belonging to a given
trophic level[7,8], these are highly nonrealistic assumptions.
Nevertheless, extinction dynamics in Abramson‘s model
shows some features that are characteristic to Earth‘s biosys-
tem.

In the present paper we introduce a Lotka-Volterra model
that describes a simplified ecosystem ofN species of preda-
tors and one species of preys. Our model can be thus con-
sidered as a simple food web model with only two trophic
levels. Competition between predator species is described by
a certain network[9] of interactions whose evolution is
coupled with dynamics of the model. Namely, when a certain
species becomes extinct(i.e., its density falls below a certain
threshold) it is replaced by new species with a newly created
set of interactions with some of existing species. Despite
obvious simplifications the model exhibits some properties

that are typical to more complicated ecosystems, such as, for
example, power-law distributions of intervals between ex-
tinctions. Within our model we can also examine how robust
this power-law distribution is. We find that under certain con-
ditions, such as, for example, very sparse interactions be-
tween species or too strong a dominance of a small group of
species, these power-law characteristics disappear and the
model is driven into a regime where extinctions have expo-
nential distributions or where there are no extinctions and the
ecosystem enters a steady state. In our opinion, such regimes
might be relevant when a restricted(either in space or time)
evolution of an ecosystem or its part is studied. Interestingly,
a threshold value of connectivity that separates power-law
extinctions and steady state is very close to the percolation
threshold of the random network of interspecies interactions.

According to a large class of statistical physics models of
biological evolution, avalanches of extinctions do not require
external factors to trigger them, but might be a natural con-
sequence of the dynamics of an ecosystem. As a result, these
external factors, such as, e.g., climate changes, solar activity,
or the impact of a big meteorite, are very often neglected in
such studies[10]. But such factors certainly affect the eco-
system and there is a good evidence of it[11]. Let us em-
phasize that even the basic mechanism that triggers ava-
lanches of extinctions is not known and is a subject of an
intensive multidisciplinary debate[12].

One possibility to take external factor(s) into account in
our model is to modify a growth rate of prey. Since dynamics
of the model is nonlinear, such a change might have more
dramatic consequences than merely a change of densities of
species. And indeed we noticed that dynamics of extinctions
is strongly dependent on the growth rate. It turns out that in
our model abundance of preys leads to a larger frequency of
extinctions, and in periods of hunger there are less extinc-
tions. This is clearly due to nonlinearity of the dynamics. A
larger growth rate increases the density of preys that in turn
increases densities of predators. With increased densities, dy-
namics becomes more competitive and extinctions become
more frequent. Such a periodically modulated growth rate
leaves some traces also in the probability distribution of ex-
tinctions. It might be interesting to notice that paleontologi-
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cal data also show some traces of periodic events, but their
proper understanding is still missing[11,13]

During evolution some species are favored and selected at
the expense of less fortunate ones. Evolution constantly
searches for the best solutions that resemble an optimization
process. For example, a large size of organisms of a given
species might be an advantage in some situations, but might
cause some problems in other situations. What might be Na-
ture‘s solution to this problem? Will it be middle-size species
or rather two groups of species sitting at the extremes of
conflicting requirements? In our opinion, this aspect of evo-
lution is also often omitted in models of macroevolution.
Within our model we looked at such emergent properties of
species selected by evolution. It turns out that depending on
some dynamical details, our model can reproduce both types
of solutions of such an optimization problem.

In Sec. II we introduce our model and briefly describe the
numerical method we used. Obtained results are presented in
Sec. III. In Sec. IV we summarize our results and suggest
some further extensions of our work.

II. MODEL AND NUMERICAL CALCULATIONS

We study a Lotka-Volterra ecosystem that consists ofN
species of predators with densitiesri si =1,2, . . . ,Nd who are
all feeding on one species of preys with densityr0. We as-
sume that each predator speciesi is characterized by a pa-
rameterki s0,ki ,1d that enters evolution equations of the
model through death and growth terms

ṙ0 = gstdr0s1 − r0d −
r0

N
o
i=1

N

fskidri , s1ad

ṙi = − dskidris1 − r0d + fskidrir011 −

kiri + o
j

8
kjr j

ki + o
j

8
kj
2 ,

s1bd

where i =1,2, . . . ,N. In our model we assume that species
interact mainly through environmental capacity terms[the
last term in Eq.(1b)]. Namely, the growth rate of a given
speciesi is reduced not only due to its density but also due to
weighted(with the factork) densities of a group of randomly
selected neighboring species. In Eq.(1b) summation over
these neighboring species is denoted byso8d. Approximately,
we might interpret the coefficientki as the size of organisms
of ith species — the bigger they are the bigger their role in
the environmental capacity term. We also assume that the
growth rate of preys is corrected by the environmental ca-
pacity term and due to external factors might be a slowly
varying function of timefgstdg. In principle, external factors
might also affect other terms of model(1), but for simplicity
we restrict its influence only to the growth rate of preys.
Functionsdskd and fskd reflect thek dependence of death and
growth of our species. Explicit form of functionsgstd, fskd,
anddskd will be given later.

Differential equations(1) are solved using the Runge-
Kutta fourth-order method. Multispecies Lotka-Volterra eco-
systems were subject to intensive studies since the pioneer-
ing work of May [14]. It is known that such systems might
evolve toward the steady state with positive densities. How-
ever, in some cases, in the steady state the density of some
species might be zero. Each time a density of a certain spe-
cies in model(1) drops below a threshold value which we fix
as«=−10−7 we consider such a species as extinct[15]. Such
a species is then replaced by a new species with a randomly
assigned density[from the interval (0,1)], the coefficient
ks0,k,1d that is randomly drawn from the distribution
pskd, and a new set of neighbors(all links of the “old” spe-
cies are removed). With such rules the model rather describes
N niches, and we assume that a time to create a species
which will occupy a niche is relatively short compared to the
typical lifetime of a species.

We assume that a newly created species makesz links
with randomly selected neighbors. Links are not directional
so a newly created species will also enter the evolution equa-
tion of species it is neighboring. If the extinct species would
be chosen randomly the network of interactions would have
been a random graph. However, it is the dynamics(1) that
determines which species are extinct. Thus, extinct species
are not selected randomly and the resulting network is in
general not a random graph.

III. RESULTS

In the following we describe numerical results obtained
for some particular cases of model(1).

A. Intervals between extinctions

Various paleontological data suggest that dynamics of ex-
tinctions has some power-law distributions of sizes or dura-
tions [11]. In our model we measured time intervalst be-
tween successive extinctions. In these calculations we used a
constant growth term of preysgstd;1. We examined two
cases:(i) model I, fskid;1, dskid;1 and (ii ) model II,
fskid=ki, dskid;1. Unless specified otherwise we selectki

randomly with a homogeneous distribution on the interval
(0,1) fpskd=1g. Our results are shown in Fig. 1. In the sim-
plest case, model I withz=4 andki ;1 [i.e., all species dur-
ing the evolution have identicalkis=1d] we obtain exponen-
tially decaying distribution of intervals between extinctions
Pstd. Such a decay is also seen for model Isz=4d with linear
distribution of ki namely pskd=2k. We expect that such a
behavior appears when a distribution ofki in the ecosystem
is relatively narrow and shifted toward unity. Such an effect
might be due to the small width of distributionpskd (i.e., a
distribution from which we drawki) or might be dynamically
generated as in model II. In this case even thoughki are
chosen from a homogeneous distribution, the dynamics fa-
vors largeki species(due to their larger growth rate) and they
dominate the ecosystem. When the distribution ofki in the
ecosystem is more uniform[model I with pskd=1] our simu-
lations suggest thatPstd decays as a power law. Let us no-
tice, however, that a power-law behavior is seen only on
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approximately one decade and we cannot exclude that on a
larger time scale a different(perhaps exponential) behavior
appears as was already observed in some other macroevolu-
tionary models[3]. Let us also notice that for model I with
pskd=k−1/2/2 the power-law distributionPstd seems to decay
ast−2, i.e., with the exponent consistent with some paleonto-
logical data[11] as well as with predictions of some other
models[4]. However, one has to recognize that the error bars
on experimental data are rather large and that a non-power-
law behavior cannot be excluded.

Note that a power-law decay ofPstd is seen only for suf-
ficiently largez. Whenz is too small, we observed that the
ecosystem enters the steady state where allri are positive
and there are no extinctions. This is probably due to the fact
that the competition among predators is too weak(or rather
too sparse). To examine the transition between these-two re-
gimes in more detail we measured the averaged time be-
tween extinctionst and the results are seen in Fig. 2. One
can see thatt diverges aroundz,1.8 [16]. Such a value of
the threshold parameter suggests that this transition might be
related to the percolation transition in our network of inter-
species interactions. To examine such a possibility we mea-
sured the average size of the largest cluster of connected
links in the networkR (normalized by the number of species
N) and the results are shown in Fig. 2. Vanishing of this
quantity locates the percolation transition[17]. One can see
that the percolation transition takes place at a larger value,
namely aroundz,2.0. Our results suggest that these two
transitions take place at different values ofz. However, the
analysis of finite size effects especially in the estimation oft
is rather difficult and we cannot exclude that these two tran-
sitions actually overlap, as might be suggested by their prox-
imity. Such a result would show that the dynamical regime of
an ecosystem(i.e., steady state or active with power-law dis-
tribution of extinctions) is determined by the geometrical
structure of its interactions.

B. Effect of a modulated growth rate

Now we examine the role of a modulated in time growth
rate of preys. Such a modulation is supposed to mimic the

influence of an external factor like a change of a climate.
One of the questions that one can ask in this context is how
such a change affects the extinction dynamics. We studied
model I with pskd=1 anddskid;1. The growth rate of preys
we chose asgstd=1+A sins2pt /Td, whereA and T are pa-
rameters. A typical behavior in the case of model I with such
a growth rate is shown in Fig. 3. One can see that increased
growth rate increases the density of preysr0 that increases
the density of predators. However, it increases also the fre-
quency of extinctions. Such a behavior, namely the increased
extinction rate during abundance of food, might at first sight
look as counterintuitive. This effect is related to the form of
environmental capacity terms in the growth rate in Eq.(1b),
namely 1−skiri +o j8kjr jd / ski +o j8kjd. Such a term certainly
has a larger variability for increased density of predatorsri,
and for some species(depending on the distribution of links,
coefficientski, and densities) it causes faster extinction. Let
us also notice that since the period of modulationT is quite
large, there is no retardation effect between density of preys

FIG. 1. Probability distribution
of intervals between successive
extinctions Pstd calculated for
some particular cases of model(1)
for N=100. The inset shows the
same data but plotted on a linear
logarithmic scale.

FIG. 2. The inverse average time between extinctionst−1 and
the percolation probabilityR as a function ofz. Plotted results are
based on calculations forN=100, 200, 300, and 400 and extrapo-
lation N→`.
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and predators. We observed such retardation for smaller val-
ues ofTs, 1000d.

Modulated growth rate of preys affects also the probabil-
ity distribution of intervals between extinctionsPstd as
shown in Fig. 4. One can see that the period of modulationT
is imprinted inPstd. Let us notice that certain paleontological
data do show some signs of periodicity but its origin still
remains unclear[11,13].

It is known that slowly changing ecosystems sometimes
undergo catastrophic shifts[18]. As a result, the ecosystem
switches to a contrasting alternative stable state. It would be
interesting to examine whether multispecies ecosystems, as
described by our model(1), might also exist in such alterna-
tive states. If so, one can ask whether, for example, structure
of the network of interspecies interactions or extinction dy-
namics are the same in such states.

C. Emergent properties of species

It might be interesting to ask what are the characteristics
of species that are preferred by the evolution in our ecosys-

tem. Since species are characterized only by the numberki it
is equivalent to calculating the distribution ofki in the steady
state of model(1). Of course, due to selection this distribu-
tion in general will be different than the distributionpskd,
i.e., the distribution from which we drawki of a newly cre-
ated species. Some of our results are shown in Fig. 5[all
results forgstd;1,z=4,N=100].

In the case of model Iffskid;1, dskid;1g with homoge-
neous initial distribution ofki fpskd=1g one can see that the
steady state distribution is also approximately homogeneous
(with a slight bias favoring small-k species). We checked that
model I shows this behavior also for other distributionspskd
(what you put is what you get). Different behavior appears
for model II ffskid=ki , dskid;1g. In this case the growth rate
factor fskid of the i-th species is proportional toki, which
certainly prefers species with largeki. The numerical results
for homogeneous distributionpskd=1 confirm such a behav-
ior (Fig. 5). We observed a similar strong preference of large
ki species also for model II with other distributionspskd.

We also examined the selection pattern in the presence of
some competing effects. To compensate a strong preference
toward large-k species we made simulations for our model
with fskid=ki, dskid=Îki, and pskd=1. Such a term reduces
the death rate of small-k species. Our results show(Fig. 5)
that in this case distribution ofki has two maxima at the
extremities of the interval(0,1). On the other hand, with the
same model but fordskid=s1−r0d−ki (which also reduces the
death rate of small-k species) we obtain a distribution with a
single maximum aroundk=0.45. It would be desirable to
understand the origin of the qualitative difference between
these two cases.

Actually, there is yet another property of our species that
is subjected to evolutionary selection, namely the number of
links l i (degree) of a given species. Although at the beginning
each species acquiresz links this number changes during the
evolution because some links of a given species might be
created or removed due to creation or extinction of another
species. And since it is the dynamics of our model and not
the random process that determines which species are re-
moved, one can expect that the degree distribution might be

FIG. 3. A time evolution of the density of preysr0, average
density of predatorsra−s1/Ndoi=1

N , and the number of extinctions
M (divided by 20) in the time intervalDt=103 for the model I with
N=100 andz=4. A rescaled modulated growth ratefgstd−1g /10
=0.09 sins2pt /Td sT=105d is also shown.

FIG. 4. Probability distribution of intervals between successive
extinctionsPstd calculated for model I with modulated growth rate
sN=100d.

FIG. 5. Distribution ofki in the steady state of some particular
cases of model(1) (see text).
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different from the Poissonian distribution that is characteris-
tic for random graphs(see[19] for a precise definition of
random graphs).

To check statistical properties of the network of interac-
tions in our model we calculated the degree distribution. Our
results for model I withz=4 andN=100 are shown in Fig. 6.
Let us notice that although each species hasz links at the
beginning it does not mean that the average number of links
connected to a given sitekl il equalsz since the dynamics of
the model might preferentially remove sites of certain con-
nectivity. And indeed, numerical calculations show that in
this casekl il=2.98,z=4, i.e., dynamics preferentially re-
moves sites of larger connectivity. For comparison with the
random graph we also plot the Poissonian distributionrsld
= e−kl ilkl ill / l!, wherekl il=2.98. It should be emphasized that
the distribution might be approximately fitted using a Pois-
son distribution, for example withkl il=2.65. However, it is
then not a physically relevant distribution since the average
connectivity kl il=2.65 differs from the valuekl il=2.98 ob-
tained from the simulations. In this sense the distribution is
not Poissonian. One can see that for large connectivity the
degree distribution decays faster than the Poissonian distri-
bution. This result confirms that dynamics of the model pref-
erentially removes highly connected species. Such sites are
probably more susceptible to fluctuations in the system due
to extinctions and creation of new species. On the other
hand, poorly connected species are more likely to arrive at a
relatively stable state. Similar results concerning the degree
distribution were obtained in some other cases of our model.

IV. CONCLUSIONS

In the present paper we studied extinction dynamics of a
Lotka-Volterra model of a two-level food web. In our model
N species of predators feed on a single species of preys.
Competition between predators, which is specified by a cer-
tain network of interactions, leads to their extinction and

replacement by new species. The distribution of intervals
between successive extinctions in some cases has power-law
tails and thus resembles the extinction pattern of the real
ecosystem. However, when the network of interactions be-
tween predators is too sparse the ecosystem enters the steady
state. We have shown that such a change of behavior might
be related to a percolation transition of the network. We also
examined an influence of external factors on the evolution of
the ecosystem. More specifically, we studied the evolution of
our model in a case when the growth rate of preys is chang-
ing periodically in time. It turns out that such a modulation
substantially changes the frequency of extinctions. Counter-
intuitively, periods with abundance of preys have a higher
frequency of extinctions than periods with lesser amount of
preys. Moreover, we examined some properties of species
that are preferentially selected by the dynamics of our model.
Under some conditions preferred species are a compromise
to the conflicting dynamics. Under some other conditions,
preferred species form two antagonistic(with respect to the
conflicting rules) groups. We also examined the degree dis-
tribution of the network of interactions between species. It
turns out that the dynamics of the model has a slight prefer-
ence to remove species of higher connectivity. As a result
degree distribution shows some deviation from Poissonian
distribution that is characteristic to random graphs.

It would be desirable to examine some extensions of our
model. For example one can introduce additional trophic lev-
els or other forms of interspecies interactions. One can also
examine a variable number of species that would allow us to
create new species using a certain mutation mechanism
rather than assuming that they appear as soon as a niche
becomes empty. Another possibility that is outside the scope
of the majority of macroevolutionary models would be to
make further study of the emergent properties of species. For
example, one can imagine that a group of species in the
ecosystem is well adapted and essentially not subjected to
evolutionary changes. On the other hand, there is a group of
“newcomers” where evolutionary changes are much more
frequent. How are evolution and properties of newcomers
influenced by the properties of well-adapted species? Such
problems might be easily approached within our model. Se-
lection of a certain group of species(with a given value ofk,
for example) can be considered as a selection of a certain
strategy. One can examine models of this kind where species
have multicomponent parametersfk=ska,kb, . . .dg. Conse-
quently, one can study evolutionary selection of more com-
plicated traits, strategies, or behaviors. Such an approach
would provide an interesting link with certain evolutionary
aspects of game theory[20].
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FIG. 6. Probability distributionrsld of sites with a given con-
nectivity l for model I with z=4 andN=100 compared with the
corresponding Poissonian distributionskl il=2.98d.
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