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Extinction dynamics of Lotka-Volterra ecosystems on evolving networks
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We study a model of a multispecies ecosystem described by Lotka-Volterra-like equations. Interactions
among species form a network whose evolution is determined by the dynamics of the model. Numerical
simulations show power-law distribution of intervals between extinctions, but only for ecosystems with suffi-
cient variability of species and with networks of connectivity above certain threshold that is very close to the
percolation threshold of the network. The effect of slow environmental changes on extinction dynamics, degree
distribution of the network of interspecies interactions, and some emergent properties of our model are also
examined.

DOI: 10.1103/PhysReVvE.69.061901 PACS nuni)er87.23—n, 87.10+e

I. INTRODUCTION that are typical to more complicated ecosystems, such as, for
example, power-law distributions of intervals between ex-
Lotka-Volterra models of interacting species have a welltinctions. Within our model we can also examine how robust
established role in population ecolofj. Being inspired by  this power-law distribution is. We find that under certain con-
an oscillatory behavior in some prey-predator systems, theglitions, such as, for example, very sparse interactions be-
are typically used to model populations on a time scalaween species or too strong a dominance of a small group of
shorter than the lifetime of the describing species. It meanspecies, these power-law characteristics disappear and the
that long-term properties of ecosystemsacroevolutionare  model is driven into a regime where extinctions have expo-
usually not captured within such an approach. On the othetiential distributions or where there are no extinctions and the
hand, models used to describe macroevolution very often usscosystem enters a steady state. In our opinion, such regimes
the dynamics that operates at the level of species rather thanight be relevant when a restrictéeither in space or time
individuals. Such coarse-grained models usually refer to thevolution of an ecosystem or its part is studied. Interestingly,
notion of fitness of a species that is not commonlya threshold value of connectivity that separates power-law
accepted?2]. extinctions and steady state is very close to the percolation
Recently, there has been some attempts to study macréireshold of the random network of interspecies interactions.
evolution using models equipped with dynamics that oper- According to a large class of statistical physics models of
ates at the level of individual8-5]. Taking into account that  biological evolution, avalanches of extinctions do not require
Lotka-Volterra models are relatively successful in describingexternal factors to trigger them, but might be a natural con-
many aspects of population dynamics it would be desirableequence of the dynamics of an ecosystem. As a result, these
to apply such an approach also to macroevolution. Somexternal factors, such as, e.g., climate changes, solar activity,
time ago Abramson introduced a discrete version of Lotkaor the impact of a big meteorite, are very often neglected in
Volterrra ecosysterfg] and studied certain characteristics of such studieg10]. But such factors certainly affect the eco-
extinctions. His model is an example of a one-dimensionasystem and there is a good evidence oflit]. Let us em-
food chain withM(~100) trophic levels and a single species phasize that even the basic mechanism that triggers ava-
occupying a given trophic level. Since in realistic food webslanches of extinctions is not known and is a subject of an
M~4-6 with typically many species belonging to a given intensive multidisciplinary debatgd 2].
trophic level[7,8], these are highly nonrealistic assumptions. One possibility to take external factsy into account in
Nevertheless, extinction dynamics in Abramson‘'s modelour model is to modify a growth rate of prey. Since dynamics
shows some features that are characteristic to Earth‘s biosysf the model is nonlinear, such a change might have more
tem. dramatic consequences than merely a change of densities of
In the present paper we introduce a Lotka-Volterra modekpecies. And indeed we noticed that dynamics of extinctions
that describes a simplified ecosystemNospecies of preda- is strongly dependent on the growth rate. It turns out that in
tors and one species of preys. Our model can be thus comur model abundance of preys leads to a larger frequency of
sidered as a simple food web model with only two trophicextinctions, and in periods of hunger there are less extinc-
levels. Competition between predator species is described ltions. This is clearly due to nonlinearity of the dynamics. A
a certain network[9] of interactions whose evolution is larger growth rate increases the density of preys that in turn
coupled with dynamics of the model. Namely, when a certairincreases densities of predators. With increased densities, dy-
species becomes extinGte., its density falls below a certain namics becomes more competitive and extinctions become
threshold it is replaced by new species with a newly createdmore frequent. Such a periodically modulated growth rate
set of interactions with some of existing species. Despitdeaves some traces also in the probability distribution of ex-
obvious simplifications the model exhibits some propertieginctions. It might be interesting to notice that paleontologi-
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cal data also show some traces of periodic events, but their Differential equations(1) are solved using the Runge-
proper understanding is still missing1,13 Kutta fourth-order method. Multispecies Lotka-Volterra eco-
During evolution some species are favored and selected alstems were subject to intensive studies since the pioneer-
the expense of less fortunate ones. Evolution constantling work of May [14]. It is known that such systems might
searches for the best solutions that resemble an optimizatiavolve toward the steady state with positive densities. How-
process. For example, a large size of organisms of a giveaver, in some cases, in the steady state the density of some
species might be an advantage in some situations, but miglspecies might be zero. Each time a density of a certain spe-
cause some problems in other situations. What might be Nazies in mode(1) drops below a threshold value which we fix
ture's solution to this problem? Will it be middle-size speciesase=—-10" we consider such a species as extjid]. Such
or rather two groups of species sitting at the extremes o#& species is then replaced by a new species with a randomly
conflicting requirements? In our opinion, this aspect of evo-assigned densityfrom the interval (0,1)], the coefficient
lution is also often omitted in models of macroevolution. k(0<k<1) that is randomly drawn from the distribution
Within our model we looked at such emergent properties ofp(k), and a new set of neighbotall links of the “old” spe-
species selected by evolution. It turns out that depending osies are removedWith such rules the model rather describes
some dynamical details, our model can reproduce both typas niches, and we assume that a time to create a species
of solutions of such an optimization problem. which will occupy a niche is relatively short compared to the
In Sec. Il we introduce our model and briefly describe thetypical lifetime of a species.

numerical method we used. Obtained results are presented in We assume that a newly created species makksks

Sec. lll. In Sec. IV we summarize our results and suggesivith randomly selected neighbors. Links are not directional
some further extensions of our work. so a newly created species will also enter the evolution equa-
tion of species it is neighboring. If the extinct species would
Il. MODEL AND NUMERICAL CALCULATIONS be chosen randomly the network of interactions would have

) been a random graph. However, it is the dynaniibsthat
We study a Lotka-Volterra ecosystem that consistdNof determines which species are extinct. Thus, extinct species
species of predators with densitigsi=1,2,... N) who are  gre not selected randomly and the resulting network is in
all feeding on one species of preys with dengity We as-  general not a random graph.
sume that each predator specieis characterized by a pa-
rameterk; (0<k;<1) that enters evolution equations of the

model through death and growth terms Il RESULTS
N In the following we describe numerical results obtained
- P for some particular cases of modg).
po=0pol(L~po) = 2 ) (1a P @
i=1

A. Intervals between extinctions

Various paleontological data suggest that dynamics of ex-

’
kipi + E Kipj tinctions has some power-law distributions of sizes or dura-
pi =—d(k)pi(1 = po) + f(k)pipo 1——1, , tions [11]. In our model we measured time intervalde-
K+ Sk tween successive extinctions. In these calculations we used a
i ]
j

constant growth term of preyg(t)=1. We examined two
cases:(i) model I, f(k)=1, d(k)=1 and (ii) model I,
(1b) f(k)=k;, d(k)=1. Unless specified otherwise we seléct

wherei=1,2,... N. In our model we assume that speciesrandomly with a homogeneous distribution on the interval
interact mainly through environmental capacity terftiee (0,1 [p(k)=1]. Our results are shown in Fig. 1. In the sim-
last term in Eq.(1b)]. Namely, the growth rate of a given plest case, model | witk=4 andk =1 [i.e., all species dur-
species is reduced not only due to its density but also due taing the evolution have identic&(=1)] we obtain exponen-
weighted(with the factork) densities of a group of randomly tially decaying distribution of intervals between extinctions
selected neighboring species. In Hdb) summation over P(t). Such a decay is also seen for modé&t+4) with linear
these neighboring species is denoted BY). Approximately,  distribution of k; namely p(k)=2k. We expect that such a
we might interpret the coefficiet as the size of organisms behavior appears when a distributionlefin the ecosystem
of ith species — the bigger they are the bigger their role ins relatively narrow and shifted toward unity. Such an effect
the environmental capacity term. We also assume that thmight be due to the small width of distributiqu(k) (i.e., a
growth rate of preys is corrected by the environmental casistribution from which we dravk;) or might be dynamically
pacity term and due to external factors might be a slowlygenerated as in model Il. In this case even tholglare
varying function of time[g(t)]. In principle, external factors chosen from a homogeneous distribution, the dynamics fa-
might also affect other terms of moddl), but for simplicity ~ vors largek; speciegdue to their larger growth ratand they
we restrict its influence only to the growth rate of preys.dominate the ecosystem. When the distributiorkoin the
Functionsd(k) andf(k) reflect thek dependence of death and ecosystem is more uniforfimodel | with p(k)=1] our simu-
growth of our species. Explicit form of functiorgt), f(k),  lations suggest tha®(t) decays as a power law. Let us no-
andd(k) will be given later. tice, however, that a power-law behavior is seen only on
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approximately one decade and we cannot exclude that oniafluence of an external factor like a change of a climate.
larger time scale a differeperhaps exponentipbehavior — One of the questions that one can ask in this context is how
appears as was already observed in some other macroevokuch a change affects the extinction dynamics. We studied
tionary modelq3]. Let us also notice that for model | with  model | with p(k)=1 andd(k;)=1. The growth rate of preys
p(k)=k12/2 the power-law distributiofP(t) seems to decay e chose ag(t)=1+Asin(27t/T), whereA and T are pa-
ast™?, i.e., with the exponent consistent with some paleontorameters. A typical behavior in the case of model I with such
logical data[11] as well as with predictions of some other g growth rate is shown in Fig. 3. One can see that increased
models[4_]. However, one has to recognize that the error barg,.owih rate increases the density of prgysthat increases

on experimental data are rather large and that a non-poweffe gensity of predators. However, it increases also the fre-
law behavior cannot be excluded. quency of extinctions. Such a behavior, namely the increased

f _Nottle tlhat a p\o/w]er-la\{v dtecay ﬂ(ltl) IS sein onlydfct)rr] Stutfh extinction rate during abundance of food, might at first sight
clently 1arge z. enz s too smafl, we observed that the 1,4, as counterintuitive. This effect is related to the form of

ecosystem enters the steady state wherg,adlre positive . . . :
and there are no extinctions. This is probably due to the fac?nwronmental capacity terms in the growth rate in Eidp),

that the competition among predators is too wéakrather hamely 1-{kipi+2/kip;)/(k+2k;). Such a term certainly

too sparsg To examine the transition between these-two re-has a larger var|ab_|l|ty for mpreased densﬂ_y Of. preda_hp,rs
- ; ; eand for some specigslepending on the distribution of links,

6oeﬁicientski, and densitiesit causes faster extinction. Let
us also notice that since the period of modulafiors quite
tJgrge, there is no retardation effect between density of preys

tween extinctionsr and the results are seen in Fig. 2. One
can see that diverges around~ 1.8 [16]. Such a value of
the threshold parameter suggests that this transition might

related to the percolation transition in our network of inter- 0.8 r T - T T
species interactions. To examine such a possibility we mea 300 R e
sured the average size of the largest cluster of connecte 07 i
links in the networkR (normalized by the number of species 06 | _
N) and the results are shown in Fig. 2. Vanishing of this

quantity locates the percolation transitifti7]. One can see . 95| 7

that the percolation transition takes place at a larger value~’~
namely aroundz~2.0. Our results suggest that these two
transitions take place at different valuesmfHowever, the 03
analysis of finite size effects especially in the estimation of

5001

is rather difficult and we cannot exclude that these two tran- 02 ) 1
sitions actually overlap, as might be suggested by their prox- o1} _
imity. Such a result would show that the dynamical regime of <

an ecosysteni.e., steady state or active with power-law dis- 0— : ' ' ' ' :

tribution of extinction$ is determined by the geometrical
structure of its interactions.
FIG. 2. The inverse average time between extinctioHsand
the percolation probabilitR as a function ofz. Plotted results are
Now we examine the role of a modulated in time growthbased on calculations fdd=100, 200, 300, and 400 and extrapo-
rate of preys. Such a modulation is supposed to mimic théation N— .

B. Effect of a modulated growth rate
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FIG. 3. A time evolution of the density of preys, average
density of predatorga—(llN)Ei'il, and the number of extinctions
M (divided by 20 in the time intervalAt=10° for the model | with

N=100 andz=4. A rescaled modulated growth ratg(t)-1]/10 . . . .
=0.09 sirf2mt/T) (T=10) is also shown. tem. Since species are characterized only by the nuiglier

is equivalent to calculating the distribution lgfin the steady

and predators. We observed such retardation for smaller vastate of mode(1). Of course, due to selection this distribu-
ues of T(~1000. tion in general will be different than the distributiqu(k),

Modulated growth rate of preys affects also the probabily.e., the distribution from which we dra¥ of a newly cre-
ity distribution of intervals between extinctionB(t) as ated species. Some of our results are shown in Fifall5
shown in Fig. 4. One can see that the period of modulafion results forg(t)=1,z=4,N=100].
is imprinted inP(t). Let us notice that certain paleontological | the case of model If(k)=1,d(k)=1] with homoge-
data _do show some signs of periodicity but its origin still negus initial distribution ok; [p(k)=1] one can see that the
remains uncleaf11,13. steady state distribution is also approximately homogeneous

(Ijt IS knovtvn tthath_slov% ;hanAgmg ecoslyt/s:ﬁms Somett'me?with a slight bias favoring smak-species We checked that
undergo catastrophic shiffd8]. As a result, the ecosystem 40| | shows this behavior also for other distributiqutis)
switches to a contrasting alternative stable state. It would b§

- ; : ; ; hat you put is what you ggtDifferent behavior appears
interesting to examine whether multispecies ecosystems, 1y - - .

described by our modgLl), might also exist in such alterna- or model Ii [f(ki)‘_ki ' d(ki)z_l]' _In this case the growth rate
tive states. If so, one can ask whether, for example, structurgctor f(kj) of the i-th species is proportional tg, which
of the network of interspecies interactions or extinction dy-certainly prefers species with largge The numerical results

FIG. 5. Distribution ofk; in the steady state of some particular
cases of moddll) (see text

namics are the same in such states. for homogeneous distributiop(k) =1 confirm such a behav-
_ _ ior (Fig. 5. We observed a similar strong preference of large
C. Emergent properties of species k; species also for model Il with other distributiopék).

It might be interesting to ask what are the characteristics We also examined the selection pattern in the presence of
of species that are preferred by the evolution in our ecosyssome competing effects. To compensate a strong preference
toward largek species we made simulations for our model
T=600, A=0.5, z=4 —— with f(k)=k;, d(k)=1k;, andp(k)=1. Such a term reduces
the death rate of smal-species. Our results shogiig. 5)
that in this case distribution df; has two maxima at the
extremities of the interval0,1). On the other hand, with the
same model but fod(k;) =(1-pg)™ (which also reduces the
death rate of smak-specie$we obtain a distribution with a
single maximum around=0.45. It would be desirable to
understand the origin of the qualitative difference between
these two cases.

Actually, there is yet another property of our species that
is subjected to evolutionary selection, namely the number of

links I, (degree of a given species. Although at the beginning

00 5(')0 10'00 1500 2000 2500 ?)';o 3;(;0‘ 2000 each species acquiredinks 'thIS number changes'durln'g the
t evolution because some links of a given species might be
created or removed due to creation or extinction of another

FIG. 4. Probability distribution of intervals between successivespecies. And since it is the dynamics of our model and not
extinctionsP(t) calculated for model | with modulated growth rate the random process that determines which species are re-
(N=100. moved, one can expect that the degree distribution might be

0.03

0.025

0.02

P(t)
o
2

0.01
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Modal | —— replacement by new species. The distribution of intervals
Poisson distribution -~ between successive extinctions in some cases has power-law
tails and thus resembles the extinction pattern of the real
ecosystem. However, when the network of interactions be-
tween predators is too sparse the ecosystem enters the steady
_ state. We have shown that such a change of behavior might
be related to a percolation transition of the network. We also
1 examined an influence of external factors on the evolution of
the ecosystem. More specifically, we studied the evolution of
] our model in a case when the growth rate of preys is chang-
ing periodically in time. It turns out that such a modulation
substantially changes the frequency of extinctions. Counter-
. intuitively, periods with abundance of preys have a higher
0 2 4 6 8 10 12 14 16 frequency of extinctions than periods with lesser amount of
1 preys. Moreover, we examined some properties of species
that are preferentially selected by the dynamics of our model.
FIG. 6. Probability distributiorr(l) of sites with a given con- Under some conditions preferred species are a compromise
nectivity | for model | with z=4 andN=100 compared with the to the conflicting dynamics. Under some other conditions,
corresponding Poissonian distributi6f)=2.98. preferred species form two antagonistwith respect to the
conflicting ruleg groups. We also examined the degree dis-
tribution of the network of interactions between species. It
different from the Poissonian distribution that is characterisfUrns out that the dynamics of the model has a slight prefer-
tic for random graphgsee[19] for a precise definition of €nce to remove species of higher connectivity. As a result
random graphs degree distribution shows some deviation from Poissonian
To check statistical properties of the network of interac-distribution that is characteristic to random graphs.
tions in our model we calculated the degree distribution. Our |t would be desirable to examine some extensions of our
results for model | witrz=4 andN=100 are shown in Fig. 6. model. For example one can introduce additional trophic lev-
Let us notice that although each species hdimks at the €IS or other forms of interspecies interactions. One can also
beginning it does not mean that the average number of link§x@mine a variable number of species that would allow us to
connected to a given sit¢) equalsz since the dynamics of Create new species using a certain mutation mechan[sm
the model might preferentially remove sites of certain con./&ther than assuming that they appear as soon as a niche
nectivity. And indeed, numerical calculations show that inP€cOmes empty. Another possibility that is outside the scope

this case(l)=2.98<z=4, i.e., dynamics preferentially re- of the majority of macroevolutionary models would be to

moves sites of larger connectivity. For comparison with themake further study of the emergent properties of species. For

random graph we also plot the Poissonian distributin example, one can imagine that a group of SPecies in the
— (A \— : ecosystem is well adapted and essentially not subjected to
= & "y /1, where(l;)=2.98. It should be emphasized that evolutionary changes. On the other hand, there is a group of
the distribution might be approximately fitted using a Pois- ) i

distribution. f le with;)=2.65. H it “newcomers” where evolutionary changes are much more
son distribution, for example Withl;)=2.65. HOWever, 1L 1S frequent. How are evolution and properties of newcomers

then not_ a physically re_levant distribution since the averaggfiuenced by the properties of well-adapted species? Such
connectivity (I;)=2.65 differs from the valuel;)=2.98 ob-  roplems might be easily approached within our model. Se-
tained from the simulations. In this sense the distribution igection of a certain group of speciesith a given value ok,

not Poissonian. One can see that for large connectivity theyr example can be considered as a selection of a certain
degree distribution decays faster than the Poissonian distrktrategy. One can examine models of this kind where species
bution. This result confirms that dynamics of the model pref-have multicomponent parametefk=(k?,k?, ...)]. Conse-
erentially removes high_ly connected .speci.es. Such sites aRently, one can study evolutionary selection of more com-
probably more susceptible to fluctuations in the system dugjicated traits, strategies, or behaviors. Such an approach

to extinctions and creation of new species. On the othefyoyid provide an interesting link with certain evolutionary
hand, poorly connected species are more likely to arrive at 8spects of game theofg0].

relatively stable state. Similar results concerning the degree
distribution were obtained in some other cases of our model.

log;q [r(D]

ACKNOWLEDGMENTS

IV. CONCLUSIONS . . . .
This work was partially supported by the Swiss National

In the present paper we studied extinction dynamics of #&cience Foundation and the project OFES 00-0578 "COSYC
Lotka-Volterra model of a two-level food web. In our model OF SENS.” Some of our calculations were done on the
N species of predators feed on a single species of preysopen-Mosix cluster” built and administrated by Lechlbe
Competition between predators, which is specified by a cerski at the Institute of Physics at the Adam Mickiewicz Uni-
tain network of interactions, leads to their extinction andversity (Poland.

061901-5



COPPEX, DROZ, AND LIPOWSKI PHYSICAL REVIEW B9, 061901(2004)

[1] J. D. Murray,Mathematical BiologySpringer, Berlin, 1989 (1996)]. This model, however, is a variant of the Bak-Sneppen
J. Hofbauer and K. Sigmundihe Theory of Evolution and model with dynamics operating at the level of species.
Dynamical System@ambridge University Press, Cambridge, [11] M. E. J. Newman and R. G. O. Palmer, e-print adap-org/
1988. 9908002.

[2] P. Bak and K. Sneppen, Phys. Rev. Léti, 4083(1993; B. [12] M. E. J. Newmann and R. G. Palmeévlodelling Extinction
Drossel, Adv. Phys50, 209 (2001). (Oxford University Press, New York, 2003

[3] D. Chowdhury, D. Stauffer, and A. Kunwar, Phys. Rev. Lett. [13] D. M. Raup and J. J. Sepkoski, Proc. Natl. Acad. Sci. U.S.A.
90, 068101(2003. 81, 801(1984).

[4] P. A. Rikvold and R. K. P. Zia, Phys. Rev. B8, 031913  [14] R. M. May, Nature(London 238 413(1972.

(2003. [15] Statistical properties of extinctions that we study in this paper

[5] M. Hall, K. Christensen, S. A. di Collobiano, and H. J. Jensen, are not affected by the precise value of thas soon as it has
Phys. Rev. E66, 011904(2002. a small valug(e <1).

[6] G. Abramson, Phys. Rev. B5, 785(1997). [16] For nonintegerz (i.e., the number of links of newly created

[7] B. Drossel and A. J. McKandjandbook of Graphs and Net- speciey we used the following procedure: with probability
works: From the Genome to the Internedited by S. Born- —[z] we createdz]+1 links and with probability 1#z]-z we
holdt and H. G. SchustéWiley-VCM, Berlin, 2002, e-print: created z] links. On average such a recipe produzémks.
nlin.AO/0202034; D. Chowdhury and D. Stauffer, e-print [17] D. Stauffer and A. Aharony,Introduction to Percolation
g-bio.PE/0311002. Theory(Taylor & Francis, London, 1982

[8] C. Quince, P. G. Higgs, and A. J. McKane,Biplogical Evo-  [18] M. Scheffer, S. Carpenter, J. A. Foley, C. Folks, and B.
lution and Statistical Physic®dited by M. Lassig and A. Val- Walker, Nature(London 413 591 (200D.
lerian (Springer-Verlag, Berlin, 2002 [19] B. Bollobas,Random Graphs2nd ed.(Cambridge University

[9] R. Albert and A. -L. Barabasi, Rev. Mod. Phy#4, 47 (2002. Press, Cambridge, 20p1

[10] One of the few macroevolutionary models that takes into ac{20] R. Axelrod, The Evolution of Cooperatio(Basic Books, New
count external factors was studied by Roberts and Newjigan York, 1984; J. Maynard SmithEvolution and the Theory of
W. Roberts and M. E. J. Newman, J. Theor. Bidl80 39 Games(Cambridge University Press, Cambridge, 1982

061901-6



